Quierschieder Weg 38, 66280 Sulzbach anfrage@apm-telescopes.de

APM Professional Telescopes

APM Professional Telescopes

1m F/8 Ritchey Chrétien with dual Nasmyth Foci, Cape Town (South Africa)

Another large telescope for the South African Astronomical Observatory (SAAO). An 1m F/8 Alt-Az mounted Ritchey Chrétien for robotic use. It has dual Nasmyth Foci. The main telescopes used for research are located at the SAAO observing station (32°22.795’S 20°48,657’E) near Sutherland in the Northern Cape, a 4-hour drive from Cape Town.

UVEX Spectrograph

Uvex Spectrograph

The UVEX is a “crossed” Czerny-Turner spectroscope optimized for wavelengths from near UV (<350nm) to near IR (1µm).

ASA Telescopes

ASA600 with DDM200

ASA600 OTA is the perfect fit for the ASA direct drive mounts with absolute encoders. As all ASA telescopes the ASA600 is equipped with quartz glass optics from ASA.

More

Product enquiries

Inquiry now

Please make your enquiries about the products you require here. We will contact you as soon as possible with a customised quote.

Sirius Domes

Sirius Observatories Australia has learned that success and innovation comes from overcoming difficulties as a team and with Joe at the helm, we believe that nothing can stand in our way of eventually becoming the number one manufacturer of fiberglass observatories in the world.

More

Moravian Instruments

Beitragsseiten

Download speed

C5 cameras are equipped with on-board RAM, capable to hold several full-resolution frames. Downloading of the image to the host computer thus does not influence image digitization process, as the download only transfers already digitized images from camera memory.

Time needed to digitize and download single full frame depends on USB connection type.

Model C5A/C5S-100M C5A/C5S-150M
Full-frame, USB 3.0 (5 Gbps) 0.66 s 0.95 s
Full-frame, USB 2.0 (480 Mbps) 5.57 s 6.80 s

If only a sub-frame is read, time needed to digitize and download image is naturally lower. However, the download time is not cut proportionally to number of pixels thanks to some fixed overhead time, independent on the sub-frame dimensions.

Model C5A/C5S-100M C5A/C5S-150M
1024 × 1024 sub-frame, USB 3.0 (5 Gbps) 0.05 s 0.05 s
1024 × 1024 sub-frame, USB 2.0 (480 Mbps) 0.07 s 0.07 s

 

Warning:

The driver is sometimes forced to read bigger portions of the sensor than the user defined because of a sub-frame position and dimension limitations imposed by the sensor hardware. Sometimes it is even necessary to read the whole sensor.

Hint:

It is recommended to click the Adjust Frame button in the Frame tab of the SIPS camera control tool. The selected frame dimensions are then adjusted according to sensor limitations. Adjusted frame is then read from the sensor, without a necessity to read a bigger portions or even whole sensor and crop image in firmware.

 

C5 camera electronics supports in-camera 2 × 2 binning. If this binning mode is used, download speed increases because of less amount of data read from camera.

Model C5A/C5S-100M C5A/C5S-150M
Full-frame 2 × 2 HW binning, USB 3.0 (5 Gbps) 0.43 s 0.60 s
Full-frame 2 × 2 HW binning, USB 2.0 (480 Mbps) 1.15 s 1.71 s

 

Download speed when using the Moravian Camera Ethernet Adapter depends if the 100 Mbps or 1 Gbps Ethernet is used, if USB 2 or USB 3 is used to connect camera to Ethernet Adapter device, but also depends on the particular network utilization etc. When the camera is connected to the Ethernet Adapter using USB 3 and 1 Gbps Ethernet is directly connected to the host PC, download time of the C3-61000 full frame is approx. 2.5 s.

Camera gain

Sensors used in C3 cameras offer programmable gain from 0 to 36 dB, which translates to the output signal multiplication from 1× to 63×.

Remark:
Note the C3 camera firmware supports only analog gain, which means real amplification of the signal prior to its digitization. The used sensors support also digital gain control, which is only numerical operation, bringing no real benefit for astronomical camera. Any such operation can be performed later during image processing if desired.

Camera driver accepts gain as a number in the range 0 to 4030, which corresponds directly to sensor register value. This number does not represent gain in dB nor it is an exact gain multiply. However, the driver offers a function, which transforms the gain numerical value to gain expressed in dB as well as multiply. Some selected values are shown in the table:

Gain number Gain in dB Gain multiply
0 0.00 1.00×
1000 2.34 1.32×
2000 5.82 1.95×
3000 11.46 3.74×
4000 32.69 43.11×
4030 35.99 63.00×

 

Conversion factors and read noise

Generally, many sensor characteristics depend on the used gain. Also, the used sensors employ two conversion paths. One path offers very low read noise, but cannot utilize full sensor dynamic range. Another conversion path offers maximum pixel capacity, but at the price of higher read noise. The cross point is set to gain 3× (approx. 10 dB), where the full well capacity drops from more than 50 ke- to ~17 ke-. The read noise then drops from ~3.2 e- RMS to ~1.5 e- RMS.

Gain number Gain in dB Gain multiply Conversion factor Read noise RMS Full well capacity
0 0.0 dB 0.76 e-/ADU 3.52 e- 50,000 e-
2749 9.7 dB 0.25 e-/ADU 3.13 e- 16,500 e-
2750 9.7 dB 0.25 e-/ADU 1.51 e- 16,500 e-
4030 36.0 dB 63× 0.17 e-/ADU 1.44 e- 11,200 e-

 

Sensor dynamic range, defined as full well capacity divided by read noise, is greatest when using gain 0, despite somewhat higher read noise:

  • At gain = 0, dynamic range is 50,000 / 3.52 = 14,205×
  • At gain = 2750, dynamic range is 16,500 / 1.51 = 10,927×

Also, it is worth noting that in reality the noise floor is only rarely defined by read noise. Unless the camera is used with very narrow narrow-band filter (with FWHM only a few nm) and under very dark sky, the dominant source of noise is the sky glow. When the noise generated by sky glow exceeds approximately 4 e- RMS, extremely low read noise associated with gain set to 2750 or more is not utilized and dynamic range is unnecessarily limited by the lowered full well capacity.

So, which gain settings is the best? This depends on the particular task.

  • Gain set to 2750 can be utilized if imaging through narrow-band filter with appropriately short exposures, so the background noise does not exceed the read noise. This is typical for aesthetic astro-photography, where the lowered full well capacity does not negatively influence the result quality.
  • But even without narrow-band filters, the extremely low read noise allows stacking of many short exposures without unacceptable increase of the stacked image background noise, caused by accumulation of high read noise of individual exposures.
  • Gain set to 0 offers maximum full well capacity and the greatest sensor dynamic range, which is appreciated mainly in research applications. Pass-bands of filters used for photometry are relatively wide and dominant source of noise is the sky glow.
  • But also for RGB images, used for aesthetic astro-photography, higher dynamic range allows longer exposures while the bright portions of the nebulae and galaxies still remain under saturation limit and thus can be properly processed.
Remark:

Please note the values stated above are not published by sensor manufacturer, but determined from acquired images using the SIPS software package. Results may slightly vary depending on the test run, on the particular sensor and other factors (e.g. sensor temperature, sensor illumination conditions etc.), but also on the software used to determine these values, as the method is based on statistical analysis of sensor response to light.

APM Professional Telescopes

1m F/8 Ritchey Chrétien with dual Nasmyth Foci, Cape Town (South Africa)

Another large telescope for the South African Astronomical Observatory (SAAO). An 1m F/8 Alt-Az mounted Ritchey Chrétien for robotic use. It has dual Nasmyth Foci. The main telescopes used for research are located at the SAAO observing station (32°22.795’S 20°48,657’E) near Sutherland in the Northern Cape, a 4-hour drive from Cape Town.

Creative Contact Form

Contact Us
Feel free to contact us if you have any questions

COMPANY HQ

APM Telescopes
Quierschieder Weg 38
66280 Sulzbach
GERMANY

Telefon: +49 (0)6897 - 924929-0
Fax:       +49 (0)6897 - 924929-9
E-Mail: info@apm-telescopes.de
WWW: https://www.apm-professional-telescopes.com

Wir benutzen Cookies

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.